P versus NP problem - definição. O que é P versus NP problem. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é P versus NP problem - definição


P versus NP problem         
  • s2cid=14352974 }}</ref>
  • quadratic fit]] suggests that the algorithmic complexity of the problem is O((log(''n''))<sup>2</sup>).<ref name=Pisinger2003>Pisinger, D. 2003. "Where are the hard knapsack problems?" Technical Report 2003/08, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark</ref>
  • NP]], NP-complete, and NP-hard set of problems (excluding the empty language and its complement, which belong to P but are not NP-complete)
UNSOLVED PROBLEM IN COMPUTER SCIENCE ABOUT TIME COMPLEXITY
P=NP; P and NP; P = NP; P==NP; P≠NP; P!=NP; P/=NP; P versus NP; P vs. NP; P vs NP; P=NP?; NP problem; P Versus NP Problem; P=np; P vs np; Complexity classes P and NP; P=NP problem; P ≠ NP; P is not NP; NP=P; NP = P; P Versus NP; Succinct problem; Succinct problems; P=?NP; P vs. NP problem; P = NP problem; Algebrization; P = NP?; P vs NP problem; Vinay Deolalikar; P≟NP; P ≟ NP; P ? NP; NP conjecture; P conjecture; NP versus P problem; NP=P problem; Smale's third problem; User:Robert McClenon/Vinay Deolilakar; Vinay Deolilakar; P/NP Problem; P v NP; P = np; P≟NP problem; Np vs p; P versus NP conjecture; NP versus P conjecture
The P versus NP problem is a major unsolved problem in theoretical computer science. In informal terms, it asks whether every problem whose solution can be quickly verified can also be quickly solved.
NP-hard         
  • P≠NP]], while the right side is valid under the assumption that P=NP (except that the empty language and its complement are never NP-complete)
COMPLEXITY CLASS
NP hard; Np hard; Np-hard; NP-Hard Problem; NP-HARD; NP-hard problems; NP-Hard; NP-hard
<complexity> A set or property of computational {search problems}. A problem is NP-hard if solving it in {polynomial time} would make it possible to solve all problems in class NP in polynomial time. Some NP-hard problems are also in NP (these are called "NP-complete"), some are not. If you could reduce an NP problem to an NP-hard problem and then solve it in polynomial time, you could solve all NP problems. See also computational complexity. [Examples?] (1995-04-10)
NP-hardness         
  • P≠NP]], while the right side is valid under the assumption that P=NP (except that the empty language and its complement are never NP-complete)
COMPLEXITY CLASS
NP hard; Np hard; Np-hard; NP-Hard Problem; NP-HARD; NP-hard problems; NP-Hard; NP-hard
In computational complexity theory, NP-hardness (non-deterministic polynomial-time hardness) is the defining property of a class of problems that are informally "at least as hard as the hardest problems in NP". A simple example of an NP-hard problem is the subset sum problem.